BD23-A 射频基带一体化 芯片规格书

目 录

1	概述	••••••	.1
2	基带打	支术指标	1
2.]		NSS 技术指标	
4.			
	2.1.1	工作频点	
	2.1.2	定位模式 跟踪通道数	
	2.1.3		
	2.1.4	捕获灵敏度	
	2.1.5	跟踪灵敏度	
	2.1.0	失锁重捕获灵敏度	
	2.1.7	伪距观测量精度	
	2.1.9	载波相位观测量精度	
	2.1.10	定位精度	
	2.1.11	测速精度	
	2.1.12	授时精度	
	2.1.13	冷启动时间	
	2.1.14	温启动时间	
	2.1.15	热启动时间	
	2.1.16	重捕获时间	
	2.1.17		
	2.1.18	抗脉冲干扰	
	2.1.19	抗转发式干扰	
	2.1.20	抗多径干扰	4
	2.1.21	高动态	
2.2	2 RI	OSS 技术指标	5
	2.2.1	工作频点	5
	2.2.2	接收灵敏度	
	2.2.3	接收通道数	
	2.2.4	首次捕获时间	
	2.2.5	重捕获时间	
	2.2.6	通信成功率	5
	2.2.7	兼收性能	5
	2.2.8	抗窄带干扰	5
2.3	3 全	球短报文接收与发射性能	5
	2.3.1	工作频点	5
	2.3.2	接收灵敏度	
	2.3.3	接收通道数	6
	2.3.4	重捕获时间	6
	2.3.5		

	2.4	导航信息增强技术指标	6
	2.5	快速精密定位技术指标	6
	2.6	安全定位授时技术指标	7
	2.7	输出频度	7
	2.8	其它指标	7
3		低功耗	8
	3.1	时钟域	8
	3.2	复位域	8
4		电源要求	8
	4.1	电源接口	8
	4.2	电源时序要求	9
		4.2.1 上电时序	9
		4.2.2 掉电时序	
	4.3	4.2.3 复位时序 功耗要求	
5		电气特性	
	5.1	- ··· · · · · · · · · · · · · · · · · ·	
	5.2	推荐的工作参数	
	5.3	ESD.	
	5.4	结温与散热	
6		封装规格	
	6.1	封装要求	12
	6.2	组成框图	14
		6.2.1 BD23R die	
		6.2.2 FLASH die	
		6.2.3 DDR3 die	
7		产品型号及含义	
8		丝印要求	17
9		质量等级要求	17

1 概述

BD23-A 射频基带一体化芯片(以下简称芯片)是一款面向 J 民两用的多模 多频卫星导航基带芯片,支持北斗、GPS、格洛纳斯、伽利略等卫星导航系统,支持星网低轨快速精密定位信号处理,支持星网低轨安全定位授时信号处理,与 低轨窄带或宽带通信终端基带搭配支持星网低轨导航信息增强。芯片还支持北斗 二号、三号 RDSS 区域和全球业务。

芯片具有两个 64bits 处理器,能够实现导航与导航应用一体化。如制导控制器应用,能够实现卫星导航、惯性导航以及飞行控制在单芯片层面的实现一体化设计。

芯片集成八路射频接收通道、一路射频发射通道,每个通道包含有一个独立可配置的频率合成器,可实现七路 GNSS 频点、一路 RDSS S 频点信号的接收以及一路 RDSS L 频点入站信号的发射。

芯片具有极低功耗和极小的封装尺寸,详情见后续章节描述。

2 基带技术指标

2.1 RNSS 技术指标

2.1.1 工作频点

(1) BDS

北斗频点: B1C、B1I、B2a、B2b、B3I、S1、S2。

支持 GEO 卫星播发的 SBAS 信号,包括 SBAS-B1C 和 SBAS-B2a。

其中: B2a 主要面向航空等生命安全用户、双频第二频点应用; B2b 主要面向单向对地数据传输业务、短报文通信、基本导航电文等传输需求,可提供全球短报文通信反向链路,支持精密单点定位能力。

(2) 国外卫星导航系统

GPS: L1C/A、L1C、L2C。

Galileo: E1OS, E5a, E5b.

GLONASS: G1, G2.

其中,B1C、L1C/A、L1C、E1OS 的中心频点一致,B2a、L5、E5a 的中心频点一致,B2b、E5b 的中心频点一致。

2.1.2 定位模式

BDS 单频模式: B1I、B2a、B3I、B1C。

BDS 双频模式: B1I+B3I、B1C+B2a。

GPS 单频模式: L1C/A。

Galileo 单频模式: E10S。

GLONASS 单频模式: G1。

2.1.3 跟踪通道数

民码: ≥256 (支持四系统双频应用)。

2.1.4 动态条件

准静态:

- (1) 速度: ≤30m/s
- (2) 加速度: ≤5m/s²
- (3) 加加速度: $\leq 0.5 \text{m/s}^3$

低动态:

- (1) 速度: ≤515m/s
- (2) 加速度: ≤4g

(3) 加加速度: ≤0.4g/s

中动态:

- (1) 速度: ≤1720m/s
- (2) 加速度: ≤30g
- (3) 加加速度: ≤3g/s

高动态(具有惯导辅助):

- (1) 速度: ≤8160m/s
- (2) 加速度: ≤50g
- (3) 加加速度: ≤50g/s
- 2.1.5 捕获灵敏度

准静态条件下:

- 1) B1C: ≤-145dBm
- 2) B1I₃ B3I₂ ≤-143dBm

注: 1)如果信号分量由导频分量和数据分量构成,电平默认是指导频分量,以下同; 2)启动后 300s 内输出定位结果,定位精度要求为"水平优于 20m,垂直优于 20m (95%)"。

2.1.6 跟踪灵敏度

准静态条件下:

- 1) B1C: ≤-157dBm
- 2) B1I、B3I: ≤-156dBm

注: 1) 信号电平逐渐降低,定位精度要求为"水平优于 60m,垂直优于 60m (95%)"。

2.1.7 失锁重捕获灵敏度

准静态条件下:

- 1) B1C: ≤-154dBm
- 2) B1I、B3I: ≤-150dBm

注: 定位精度要求为"水平优于 60m, 垂直优于 60m (95%)"。

2.1.8 伪距观测量精度

准静态条件下:

- 1) B3I, B2a, B2b: $\leq 0.1 \text{m} (1 \, \sigma)$
- 2) B1C、B1I 和国外 GNSS 民用信号: ≤0.1m (1σ)
- 2.1.9 载波相位观测量精度

准静态条件下:

≤0.01 周 (1 σ)。

2.1.10 定位精度

跑车条件下和中动态条件下:

定位模式	定位精度
BDS 单频	水平≤6m, 高程≤8m (重点地区, 95%)
	水平≤8m, 高程≤9m (全球地区, 95%)
BDS 双频	水平≤2.5m, 高程≤4m (重点地区, 95%)
	水平≤4m, 高程≤6m (全球地区, 95%)
	SBAS 仅服务重点地区
SBAS	SBAS 单频: 水平≤2.5m,高程≤4m(95%)
	SBAS 双频: 水平≤1.5m, 高程≤2m (95%)

2.1.11 测速精度

跑车条件下和中动态条件下:

 $\leq 0.2 \text{m/s} (95\%)$

2.1.12 授时精度

低动态条件下:

≤20ns (95%)。

2.1.13 冷启动时间

低动态条件下:

- 1) B1C: ≤20s (95%, 电离层参数已知^{注 1}), ≤75s (95%, 电离层参数未知^{注 2})
- 2) B1I、B3I: ≤50s (95%, 电离层参数已知^{注 3}), ≤55s (95%, 电离层参数未知^{注 4})
 - 注1: 在电离层参数已知条件下, 收齐定位所需电文的时间为 18s。
- 注 2: 电离层参数在子帧 3 页面类型 1 中播发,假设子帧 3 按照页面类型 1/2/3/4 顺序依次播发,则收齐定位所需电文的时间最长 72s。
- 注 3: 假设待捕卫星列表第 5 颗星可见,则信号捕获时间约为 5s*5=25s。在电离层参数已知条件下,收齐定位所需电文的时间最长 24s。
 - 注 4: 在电离层参数未知条件下, 收齐定位所需电文的时间最长 30s。

2.1.14 温启动时间

低动态条件下:

- 1) B1C ^{注1}: ≤20s (95%, 电离层参数已知), ≤75s (95%, 电离层参数未知)
- 2) B1I、B3I^{±2}: ≤30s (95%, 电离层参数已知), ≤35s (95%, 电离层参数未知)

注 1: 历书信息对于 B1C 信号捕获时长改善不明显, 因此温启动时间指标和冷启动时间指标相同。

注 2: 历书信息可确保待捕卫星列表第 1 颗星可见,收齐定位所需电文的时间和冷启动时间项相同,因此温启动时间指标比冷启动时间指标减小 20s。

2.1.15 热启动时间

低动态条件下,正常定位后关机半个小时以内开机:

BDS 公开服务信号: ≤5s (95%)

2.1.16 重捕获时间

低动态、中动态条件下,信号中断 30s:

BDS 公开服务信号: ≤2s (95%);

2.1.17 抗窄带干扰

准静态条件下(窄带干扰场景):

干扰功率不低于-53dBm (信号功率-133dBm)。

窄带干扰场景如下:

停留时间 10ms,步进 4kHz,干扰带宽按导航信号有效带宽的 10%在整个导航信号带宽内进行扫频。干扰功率从最大值开始测试,每次降低 1dB,直至定位精度满足要求(水平 8m、高程 9m)。

B3 导航信号有效带宽: 20MHz, 干扰带宽为 2MHz。

2.1.18 抗脉冲干扰

准静态条件下(脉冲干扰场景):

脉冲干扰占空比不低于 50% (信号功率-130dBm)。

脉冲干扰场景如下:

干扰信号带宽与导航信号带宽一致,频度 1kHz,脉冲干扰峰值功率-30dBm。 占空比从 50%开始测试,每次降低 5%,直至定位精度满足要求(水平 8m、高 程 9m)。

2.1.19 抗转发式干扰

低动态条件下:

干扰信号比卫星信号功率强 3~10dB, 相对于卫星信号的最小时延 1.5 个基码宽度,最大时延 2046 个基码宽度。

支持各种欺骗干扰场景的检测、识别与抑制: 1) 先转发、再真实信号; 2) 先真实信号、再转发; 3) 先压制、再转发; 4) 压制的同时施加转发。

2.1.20 抗多径干扰

低动态条件下:

最小延迟优于 0.5 个基码宽度。

2.1.21 高动态

支持惯导信息输入,以实现动态场景或干扰环境下惯导对卫导跟踪环路的辅助。

2.2 RDSS 技术指标

2.2.1 工作频点

接收信号类型: S2、S1。

发射信号类型:Lf1、Lf2。

2.2.2 接收灵敏度

≤-123.8dBm (专用段 24kbps 信息帧, 误码率≤1e-5)

≤-127.5dBm (专用段 16kbps 信息帧, 误码率≤1e-5)

≤-130.0dBm (专用段 8kbps 信息帧, 误码率≤1e-5)

2.2.3 接收通道数

S2C: ≥14

2.2.4 首次捕获时间

S2C: ≤2s

2.2.5 重捕获时间

S2C: ≤1s

2.2.6 通信成功率

区域短报文支持单次发送报文最大长度: 14000bit (1000 个汉字),通信成功率>95%。

2.2.7 兼收性能

可兼收下属用户数据不少于500个。

2.2.8 抗窄带干扰

干信比≥58dB (信号功率-123.8dBm, 电文速率 16kbps)。

2.3 全球短报文接收与发射性能

2.3.1 工作频点

接收信号类型: B2b

发射信号类型: Lf4

2.3.2 接收灵敏度

<-130dBm (误码率≤1e-5)

2.3.3 接收通道数

>16

2.3.4 重捕获时间

北斗卫星信号短时中断 30s, 重捕时间不超过 2s。

2.3.5 通信成功率

全球短报文支持单次发送报文最大长度: 560bit (40 个汉字),通信成功率 >95%。

2.4 导航信息增强技术指标

- 1)可接收和处理低轨窄带广播导航增强信息(在系统支持导航基带接收的前提下)、低轨窄带或宽带通信终端基带提供的导航增强信息,实现联合位置解算及导航增强的能力;
 - 2)首次定位时间: 优于 10s (在系统能力具备条件下);
 - 3)定位精度: 水平≤0.3m, 高程≤0.6m (1 σ) (在系统能力具备条件下)。

2.5 快速精密定位技术指标

1) 低轨快速精密定位信号接收信号类型

LEO-L: 1522.224 ± 2.046MHz

LEO -B2b: 1202.025 ± 2.046 MHz

- 2)具有 GNSS 卫星导航信号、低轨卫星精密导航信号和增强信息联合解算能力;
 - 3)低轨卫星精密导航信号灵敏度:

捕获灵敏度: ≤-133dBm:

跟踪灵敏度: ≤-138dBm。

- 4)单频点跟踪通道数量: ≥6;
- 5)低轨卫星精密导航信号伪距测量精度: 优于 0.6m (载噪比≥45dBHz);
- 6)低轨卫星精密导航信号载波相位测量精度: 优于 2mm(载噪比≥45dBHz);

7)联合解算定位精度: 水平优于 $0.1m(1\sigma)$, 垂直优于 $0.2m(1\sigma)$ (在系统能力具备条件下):

- 8)联合解算收敛时间: ≤1min。(在系统能力具备条件下)
- 9)最大频偏估计范围: ±40KHz;
- 10)最大频率变化率支持: 500Hz/s;
- 11)电文误码率: ≤1×10⁻⁶ (载噪比≥45dBHz)。

2.6 安全定位授时技术指标

- 1)具备低轨安全定位授时信号(SPT)接收能力
- 2)LEO 接收灵敏度: ≤-120dBm (误码率≤10-5);
- 3)独立定位精度: ≤50m (1 σ);
- 4)独立定位收敛时间: ≤8min(多星);
- 5)独立授时精度: ≤200ns (1 σ);
- 6)最大频偏估计范围: ±40KHz;
- 7)最大频率变化率支持: 500Hz/s;
- 8)多普勒测量精度: ≤1Hz (载噪比>55dB-Hz);

2.7 输出频度

定位结果输出频度可配置(典型档: 1Hz、2Hz、5Hz、10Hz、20Hz)。

2.8 其它指标

- 1)针对记忆码信号(例如 Galileo E1OS)或者伪码生成方式未知的信号(例如 MO卫星),预留伪随机码加载设计,支持对这些信号的接收。
- 2) 内置主频可达 264MHz 的 Cortex-M4 处理器, 配备 256KB 的 SRAM, 具有独立的中断控制器和 TAP 调试器。
 - 3) 支持 B 码授时接口,满足 IRIG-B(DC)授时协议,授时精度≤20ns。
 - 4) 内置 1024 点浮点 FFT 加速器。

3 低功耗

3.1 时钟域

每个处理器,以及每个模块(组件)均有独立的门控时钟,可以通过软件开启或者关闭处理器或者模块(组件)的时钟,以减少不必要的功耗。

3.2 复位域

每个处理器以及每个模块(组件)均有独立的软件复位功能,可以通过软件对每个模块(组件)进行单独的复位。

POR 和外部复位可以对全芯片进行复位,也可以通过软件对全芯片进行复位。

4 电源要求

4.1 电源接口

DVDD Core 0.9V: 内核

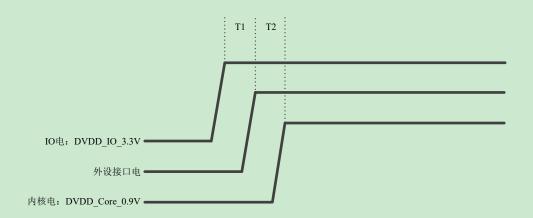
DVDD_IO_1.8V:数字IO(EMMC,GMAC,ExADC)

DVDD_IO_3.3V: 数字 IO (大部分)

DVDD DDRIO 1.5V: DDR IO

DVDD DDRVREF 0.75V: DDR VREF

AVDD PLL 0.9V: PLL

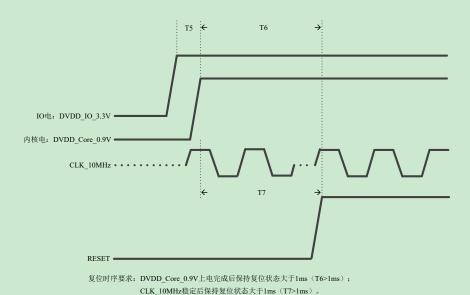

AVDD ADC 0.9V: ADC 内核

AVDD RF 0.9V: RF

4.2 电源时序要求

4.2.1 上电时序

上电时序要求: DVDD_IO_3.3V \rightarrow 外设接口电 \rightarrow DVDD_Core_0.9V,T1: \geq 0,T2: TBD。 外设接口电可以同DVDD_IO_3.3V同时上电或在DVDD_IO_3.3V后上电。


4.2.2 掉电时序

掉电时序要求: DVDD_Core_0.9V→ 外设接口电→DVDD_IO_3.3V,T3: TBD,T4: \geq 0。 外设接口电可以同DVDD_IO_3.3V同时掉电或在DVDD_IO_3.3V前掉电。

4.2.3 复位时序

4.3 功耗要求

芯片功耗: ≤300mW (典型工况平均功耗)。

J用典型工况: 定位频度设定为 1Hz、16 个北斗系统 J用通道和 14 个 RDSSJ用通道处于连续跟踪状态同时接收导航增强信息情况下的功耗。

民用典型工况: 定位频度设定为 1Hz、16 个北斗系统民用通道和 14 个 RDSS 民用通道处于连续跟踪状态同时接收导航增强信息情况下的功耗。

SPT 典型工况: 定位频度设定为 1Hz、SPT 独立定位情况下的功耗。

芯片具有旁路休眠功能: 在休眠模式下, 芯片运行在极低功耗水平, 唤醒后能够进行快速热启动。

5 电气特性

5.1 极限参数

在任何情况下都不能超过下表所列的最大额定值的范围,否则将会永久性地损坏芯片。

	名称	参数	Min	Max	单位
电源	内核电源	DVDDCore0.9	-0.3	1.1	V
	PLL 电源	AVDDPLL0.9	-0.3	1.1	V
	1.8V IO 电源	DVDDIO18	-0.3	2.45	V
	3.3V IO 电源	DVDDIO33	-0.3	4.0	V

	ADC 模拟电源	AVDDADC0.9	-0.3	1.1	V
	RF 电源	AVDDRF0.9	-0.3	1.1	V
	DDR IO 电源	DVDDQDDR	-0.3	2.45	V
	DDR 参考电压	DVDDREF			V
IO		LVCMOS18	-0.3	DVDDIO18+0.3	V
	数字 IO	LVCMOS33	-0.3	DVDDIO33+0.3	V
		SSTL15	-0.3	2.45	V
	模拟信号(ADC)	ANALOG	-0.3	1.4	Vpp
	时钟输入	SysClk_In	-0.3	DVDDIO33+0.3	V
	叫扩视人	ADCClk_In	-0.3	DVDDIO33+0.3	V

5.2 推荐的工作参数

	名称	参数	Min	Тур	Max	単位
	内核电源	DVDDCore0.9	0.81	0.9	0.99	V
	PLL 电源	AVDDPLL0.9	0.81	0.9	0.99	V
	1.8V IO 电源	DVDDIO18	1.71	1.8	1.89	V
山 酒	3.3V IO 电源	DVDDIO33	3.135	3.3	3.465	V
电源	ADC 模拟电源	AVDDADC0.9	0.81	0.9	0.99	V
	RF 电源	AVDDRF0.9	0.81	0.9	0.99	V
	DDR IO 电源	DVDDQDDR	1.283	1.35	1.45	V
	DDR 参考电压	DVDDREF	0.661	0.675	0.689	V

5.3 ESD

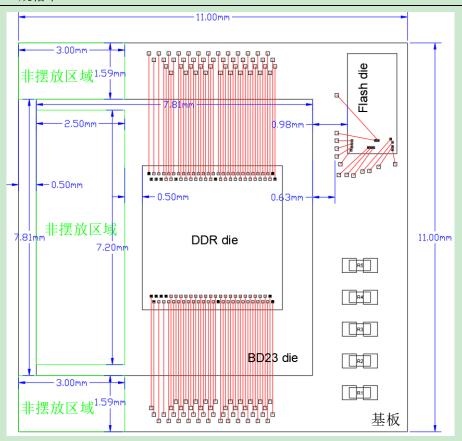
名称	模型	条件	等级	最大值	单位
VESD(HBM)	Human body model	TA=+25℃	2	2000	V
VESD(CDM)	Charge device model	TA=+25℃	II	500	V
VESD(MM)	Machine model	TA=+25℃	В	200	V

5.4 结温与散热

名称	参数	Min	Max	单位
贮存温度	Storage Temperature range	-65	150	$^{\circ}\mathbb{C}$
工作温度	Operation Temperation range	-55	125	$^{\circ}$ C

					_
结温	Junction Temperature range	-55	125	$^{\circ}\!\mathbb{C}$	

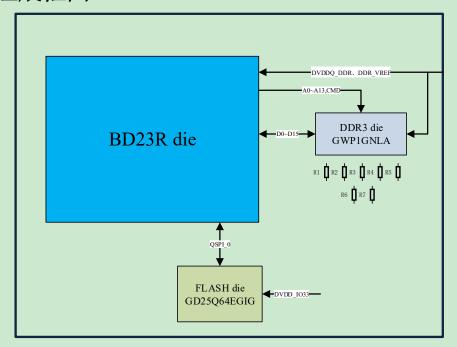
6 封装规格


6.1 封装要求

- (1) 封装方式: 塑封 FCBGA+Wirebonding SIP
- (2) 引脚间距: 0.65mm
- (3) 引脚球径: 0.35mm
- (4) 引脚数量: 225 (15 行×15 列)
- (5) 基板层数: 6层(暂定)
- (6) 封装 die: BD23R die + QSPI0 Flash die (GD25Q64EGIG)+DDR3 die (GWP1GNLA)
- (7) 封装尺寸: 11mm×11mm× (≤2mm)
- (8) 封装布局:

BD23R die 按 FC 方式 SIP 于基板上,DDR3 die 叠于 BD23R die 上,正面贴装进行装片,以 Wirebonding 方式键合连接至基板,Flash die 贴装在基板上,正面贴装进行装片,以 Wirebonding 方式键合连接至基板。

初步封装布局示意图如下,后续可根据实际设计情况修改:



BD23 die 左侧为射频和 ADC 区域,区域尺寸约 7.2mm×2.5mm,顶部不能与 DDR die 重合,此区域周围不允许摆放 DDR3 键合指,以免影响射频模拟部分信号。

6.2 组成框图

BD23R-A SOC 芯片由 1 个 BD23R die、1 个 64Mbit FLASH die、1 个 2Gbit DDR3 die 和 7 个 0201 电阻组成,组成表格如下,互连关系见原理图。

序号	名称	型号	尺寸	数量	备注
1	BD23R die	ZBD3RC9284-11I	7657.2um×7657.2 um (postshrink,包含 sealring,不含 Scribe Line)	1	工程批已完成 Bumping 加工,未进 行 CP 测试
2	FLASH die	GD25Q64EGIG	1341um×2771um (不含 Scribe Line 60um)	1	已完成 CP 测试
3	DDR3 die	GWP1GNLA	3155.88um× 4375.28um (不含 Scribe Line)	1	需要 RDL, 已完成 CP 测试
4	电阻	RC0201FR-07240RL	0201 封装	2	BD23R die 和 DDR3 die DDR ZQ(cal) 电阻: 240Ω±1%
5	电阻	RC0201FR-0780R6L	0201 封装	1	DDR CLKP 和 CLKN 之间电阻 80.6Ω±1%
6	电阻	RC0201FR-074K7L	0201 封装	2	DDR RESET 下拉电 阻 4.7K 和 DDR reten_n 上拉电阻 4.7K

7	电阻	RC-01W1001FT	0201 封装	2	DDR_VREF 供电分压 电阻	
---	----	--------------	---------	---	---------------------	--

6.2.1 BD23R die

BD23R die 为 FC 倒扣焊芯片,尺寸 7657.2×7657.2um(postshrink), 封装时已完成 bumping 加工以及 CP 测试(工程批未进行 CP 测试)。

6.2.2 FLASH die

FLASH die 型号为 GD25Q64EGIG, 容量 64Mbit,尺寸 1341um×2771um,已完成CP测试。

FLASH die 为 WB 键合芯片, 6 个信号与 BD23R 互连, 电源和 地与 BD23R 的合并。FLASH die 封装时进行 WB 打线连接。

6.2.3 DDR3 die

DDR3 die 型号为 GWP1GNLA, 位宽×16, 容量 2Gbit, 尺寸 3155.88um×4375.28um (Without Scribe Line), 已完成 CP 测试。

DDR3 die 为 WB 键合芯片,信号与 BD23R 互连,电源、地与 BD23R DDR PHY 的电源、地对应互连后封装引出。DDR3 die 封装 时需要先进行 RDL,后 WB 打线连接。

6.2.4 电阻

电阻封装为0201,数量为7,焊接在基板上进行连接。

7 产品型号及含义

BD23R-A SOC 芯片产品型号为 ZBD3RC9284-11I。

名称代表含义如下:

Z: 中森通信

BD3: 北斗 3 芯片

R: 包含 GNSS、RDSS、XW 和 RF

C92: BD2x 芯片系列代号

8: 包含 8MB QSPI FLASH

4: 包含 256MB DDR3

11: 尺寸 11mm×11mm

I: 工业级, 塑封

8 丝印要求

备注: 图片中的 ZBD3MC9200-11I 需要改为 ZBD3RC9284-11I。

9 质量等级要求

要求芯片的基板设计、选型和芯片封装工艺可以满足 GJB7400 规范 N1 级的认证要求。