BD23-B 抗干扰与射频基带一体化 芯片规格书

目 录

1	概述		1
2	技术指标		2
	2.1 RNSS	基带技术指标	2
	2.1.1	工作频点	2
	2.1.2	定位模式	2
	2.1.3	跟踪通道数	2
	2.1.4	动态条件	2
	2.1.5	捕获灵敏度	3
	2.1.6	跟踪灵敏度	3
	2.1.7	失锁重捕获灵敏度	3
	2.1.8	伪距观测量精度	3
	2.1.9	载波相位观测量精度	4
	2.1.1	0 定位精度	4
	2.1.1	1 测速精度	4
	2.1.1	2 授时精度	4
	2.1.1	3 冷启动时间	4
	2.1.1	4 温启动时间	4
	2.1.1	5 热启动时间	5
	2.1.1	6 重捕获时间	5
	2.1.1	7 抗窄带干扰	5
	2.1.1	8 抗脉冲干扰	5
	2.1.1	9 抗转发式干扰	5
	2.1.2	0 抗多径干扰	5
	2.1.2	1 高动态	6
	2.1.2	2 定位结果输出频度	6
	2.2 RDSS	基带技术指标	6
	2.2.1	工作频点	6
	2.2.2	接收灵敏度	6

		2.2.3	接收通道数	.6
		2.2.4	首次捕获时间	.6
		2.2.5	重捕获时间	.6
		2.2.6	通信成功率	.6
		2.2.7	兼收性能	.6
		2.2.8	抗窄带干扰	.6
	2.3	抗干扰	尤技术指标	.6
		2.3.1	射频输出功率	.6
		2.3.2	单频点抗干扰模式	.7
		2.3.3	工作模式	.7
		2.3.4	干扰环境感知	.7
		2.3.5	可处理干扰样式	.7
		2.3.6	可处理干扰数目	.7
		2.3.7	抗干扰性能	.7
		2.3.8	抗干扰下的高精度性能	.8
	2.4	全球短	豆报文接收与发射性能	.8
		2.4.1	工作频点	.8
		2.4.2	接收灵敏度	.8
		2.4.3	接收通道数	.8
		2.4.4	重捕获时间	.8
		2.4.5	通信成功率	.9
	2.5	导航作	言息增强技术指标	.9
	2.6	快速料	青密定位技术指标	.9
	2.7	安全是	定位授时技术指标	.9
	2.8	其它打	旨标1	10
3	电源规	见格		10
	3.1	电源扫	妾口1	10
	3.2	电源印	寸序1	12
		3.2.1	上电顺序	12
		3.2.2	掉电时序1	13

	3.2.3 复位时序	13
	3.3 功耗	13
4	电气特性	13
	4.1 极限参数	13
	4.2 推荐工作参数	14
	4.3 ESD	
	4.4 结温与散热	15
5	封装规格	15
6	产品型号及含义	16
7	丝印规格	17
	质量等级	

1 概述

UNK14C92(BD23-B)抗干扰与射频基带一体化芯片(以下简称一体化芯片) 是一款面向 J 民两用的多模多频卫星导航抗干扰与基带一体化芯片,支持北斗、 GPS、格洛纳斯、伽利略等卫星导航系统的卫星信号抗干扰处理与导航定位,支 持星网低轨快速精密定位信号处理,支持星网低轨安全定位授时信号处理,与低 轨窄带或宽带通信终端基带搭配支持星网低轨导航信息增强。芯片还支持北斗二 号、三号 RDSS 区域和全球业务。

- 一体化芯片分为两个部分:一是抗干扰部分,包括 Single Cortex-A7 处理器,以及抗干扰算法 IP,能够实现单频点最多 14 通道、双频点 7+7 等卫星信号抗干扰处理;二是射频基带部分,包括 2 个 64bits 处理器,以及 8 路射频接收通道、一路射频发射通道,每个通道包含有 1 个独立可配置的频率合成器,可实现 7 路 GNSS 频点、一路 RDSS S 频点信号的接收以及一路 RDSS L 频点入站信号的发射。
- 一体化芯片内部,抗干扰部分和射频基带部分的内部接口有并口、随路钟、串口、GPIO 口、OSPI。抗干扰部分通过芯片内部的并口和随路钟,将处理后的卫星信号转发给基带用于收星定位,每个单频点支持 13 路并口输出。串口、GPIO口、OSPI 接口用于两部分直接的常规数据交互。
- 一体化芯片能够实现抗干扰与导航应用一体化。如制导控制器应用,能够实现卫星信号抗干扰、导航、惯性导航以及飞行控制在单芯片层面的实现一体化设计,且芯片具有极低功耗和极小的封装尺寸。

- 2 技术指标
- 2.1 RNSS 基带技术指标
- 2.1.1 工作频点
 - a) BDS

北斗频点: B1I、B1C、B2a、B2b、B3I、S1、S2。

支持 GEO 卫星播发的 SBAS 信号,包括 SBAS-B1C 和 SBAS-B2a。

其中: B2a 主要面向航空等生命安全用户、双频第二频点应用; B2b 主要面向单向对地数据传输业务、短报文通信、基本导航电文等传输需求,可提供全球短报文通信反向链路,支持精密单点定位能力。

b) 国外卫星导航系统

GPS: L1C/A, L1C, L2C.

Galileo: E1OS, E5a, E5b.

GLONASS: G1, G2.

其中,B1C、L1C/A、L1C、E1OS 的中心频点一致,B2a、L5、E5a 的中心 频点一致,B2b、E5b 的中心频点一致。

2.1.2 定位模式

BDS 单频模式: B1I、B2a、B3I、B1C。

BDS 双频模式: B1I+B3I、B1C+B2a。

GPS 单频模式: L1C/A。

Galileo 单频模式: E1OS。

GLONASS 单频模式: G1。

2.1.3 跟踪通道数

民码: ≥256 (支持四系统双频应用)。

2.1.4 动态条件

准静态:

- a) 速度: ≤30m/s;
- b) 加速度: ≤5m/s²;
- c) 加加速度: <0.5m/s³。

低动态:

- a) 速度: ≤515m/s;
- b) 加速度: ≤4g;
- c) 加加速度: ≤0.4g/s。

中动态:

- a) 速度: ≤1720m/s;
- b) 加速度: ≤30g;
- c) 加加速度: ≤3g/s。

高动态(具有惯导辅助):

- a) 速度: ≤8160m/s;
- b) 加速度: ≤50g;
- c) 加加速度: ≤50g/s。
- 2.1.5 捕获灵敏度

准静态条件下:

- a) B1C: ≤-145dBm;
- b) B1I、B3I: ≤-143dBm;
- 注: 1) 如果信号分量由导频分量和数据分量构成,电平默认是指导频分量,以下同;
- 注: 2) 启动后 300s 内输出定位结果, 定位精度要求为"水平优于 20m, 垂直优于 20m (95%)"。

2.1.6 跟踪灵敏度

准静态条件下:

- a) B1C: \leq -157dBm;
- b) B1I、B3I: ≤-156dBm;

注:信号电平逐渐降低,定位精度要求为"水平优于60m,垂直优于60m(95%)"。

2.1.7 失锁重捕获灵敏度

准静态条件下:

- a) B1C: ≤-154dBm;
- b) B1I、B3I: ≤-150dBm;

注: 定位精度要求为"水平优于 60m, 垂直优于 60m (95%)"。

2.1.8 伪距观测量精度

准静态条件下:

a) B3I, B2a, B2b: $\leq 0.1 \text{m} (1\sigma)$;

b) B1C、B1I 和国外 GNSS 民用信号: ≤0.1m (1σ)。

2.1.9 载波相位观测量精度

准静态条件下: ≤0.01 周 (1σ)。

2.1.10 定位精度

表1 跑车条件下和中动态条件

定位模式	定位精度			
BDS 单频	水平≤6m, 高程≤8m (重点地区, 95%)			
DDS 牛刎	水平≤8m, 高程≤9m(全球地区, 95%)			
BDS 双频	水平≤2.5m, 高程≤4m (重点地区, 95%)			
DDS /X///	水平≤4m, 高程≤6m(全球地区, 95%)			
	SBAS 仅服务重点地区:			
SBAS	SBAS 单频: 水平≤2.5m, 高程≤4m(95%)			
	SBAS 双频: 水平≤1.5m, 高程≤2m (95%)			

2.1.11 测速精度

跑车条件下和中动态条件下: <0.2m/s (95%)。

2.1.12 授时精度

低动态条件下: <20ns (95%)。

2.1.13 冷启动时间

低动态条件下:

- a) B1C: ≤20s (95%, 电离层参数已知^{注1}), ≤75s (95%, 电离层参数未知 ^{注2});
- b) B1I、B3I: ≤50s(95%, 电离层参数已知^{注3}), ≤55s(95%, 电离层参数 未知^{注4}):
- 注 1: 在电离层参数已知条件下, 收齐定位所需电文的时间为 18s。
- 注 2: 电离层参数在子帧 3 页面类型 1 中播发,假设子帧 3 按照页面类型 1/2/3/4 顺序依次播发,则收齐定位所需电文的时间最长 72s。
- 注 3: 假设待捕卫星列表第 5 颗星可见,则信号捕获时间约为 5s*5=25s。在电离层参数已知条件下,收齐定位所需电文的时间最长 24s。

注 4: 在电离层参数未知条件下, 收齐定位所需电文的时间最长 30s。

2.1.14 温启动时间

低动态条件下:

a) B1C ^{±1}: ≤20s (95%, 电离层参数已知), ≤75s (95%, 电离层参数未知);

b) B1I、B3I^{±2}: ≤30s (95%, 电离层参数已知), ≤35s (95%, 电离层参数未知);

注 1: 历书信息对于 B1C 信号捕获时长改善不明显,因此温启动时间指标和冷启动时间指标相同。

注 2: 历书信息可确保待捕卫星列表第 1 颗星可见,收齐定位所需电文的时间和冷启动时间项相同,因此温启动时间指标比冷启动时间指标减小 20s。

2.1.15 热启动时间

低动态条件下,正常定位后关机半个小时以内开机:

BDS 公开服务信号: <5s (95%):

2.1.16 重捕获时间

低动态、中动态条件下,信号中断 30s:

BDS 公开服务信号: <2s (95%):

2.1.17 抗窄带干扰

准静态条件下(窄带干扰场景):干扰功率不低于-53dBm(信号功率-133dBm)。 窄带干扰场景如下:

- a) 停留时间 10ms,步进 4kHz,干扰带宽按导航信号有效带宽的 10%在整个导航信号带宽内进行扫频。干扰功率从最大值开始测试,每次降低 1dB,直至定位精度满足要求(水平 8m、高程 9m);
- b) B3 导航信号有效带宽: 20MHz, 干扰带宽为 2MHz。

2.1.18 抗脉冲干扰

准静态条件下(脉冲干扰场景): 脉冲干扰占空比不低于 50% (信号功率 -130dBm)。

脉冲干扰场景如下:干扰信号带宽与导航信号带宽一致,频度 1kHz,脉冲干扰峰值功率-30dBm。占空比从 50%开始测试,每次降低 5%,直至定位精度满足要求(水平 8m、高程 9m)。

2.1.19 抗转发式干扰

低动态条件下:干扰信号比卫星信号功率强 3~10dB,相对于卫星信号的最小时延 1.5 个基码宽度,最大时延 2046 个基码宽度。

支持各种欺骗干扰场景的检测、识别与抑制: 1) 先转发、再真实信号; 2) 先真实信号、再转发; 3) 先压制、再转发; 4) 压制的同时施加转发。

2.1.20 抗多径干扰

低动态条件下:最小延迟优于 0.5 个基码宽度。

2.1.21 高动态

支持惯导信息输入,以实现动态场景或干扰环境下惯导对卫导跟踪环路的辅助。

2.1.22 定位结果输出频度

定位结果输出频度可配置(典型档: 1Hz、2Hz、5Hz、10Hz、20Hz)。

- 2.2 RDSS 基带技术指标
- 2.2.1 工作频点
 - a) 接收信号类型: S2、S1;
 - b) 发射信号类型: Lf1、Lf2。
- 2.2.2 接收灵敏度
 - a) ≤-123.8dBm (专用段 24kbps 信息帧, 误码率≤1e⁻⁵);
 - b) ≤-127.5dBm (专用段 16kbps 信息帧, 误码率≤1e⁻⁵);
 - c) ≤-130.0dBm (专用段 8kbps 信息帧, 误码率≤1e⁻⁵)。
- 2.2.3 接收通道数

S2C: ≥ 14 ;

2.2.4 首次捕获时间

S2C: <2s;

2.2.5 重捕获时间

S2C: <1s:

2.2.6 通信成功率

区域短报文支持单次发送报文最大长度: 14000bit (1000 个汉字),通信成功率≥95%。

2.2.7 兼收性能

可兼收下属用户数据不少于500个。

2.2.8 抗窄带干扰

干信比≥58dB(信号功率-123.8dBm, 电文速率 16kbps)。

- 2.3 抗干扰技术指标
- 2.3.1 射频输出功率
 - a) B3 频点射频输出功率范围: [-80dBm -50dBm];

- b) B1 频点射频输出功率范围: [-80dBm -50dBm];
- c) B2 频点射频输出功率范围: [-80dBm -50dBm];
- d) S 频点射频输出功率范围: [-80dBm -50dBm]。

2.3.2 单频点抗干扰模式

- a) 支持 B3 频点天线阵元数最多为 14 个:
- b) 支持 B1 频点天线阵元数最多为 14 个;
- c) 支持 S 频点天线阵元数最多为 14 个;
- d) 支持 B2b 频点天线阵元数最多为 14 个。

2.3.3 工作模式

- a) 支持调零抗干扰工作模式;
- b) 支持波束指向工作模式。

2.3.4 干扰环境感知

可输出最强干扰来向、干扰总功率以及干扰个数。

2.3.5 可处理干扰样式

可支持宽带、脉冲、窄带、扫频等典型样式及上述样式的组合。

2.3.6 可处理干扰数目

七阵元天线阵列情况下,可抑制6个宽带干扰和至少1个窄带干扰。

2.3.7 抗干扰性能

- a) RNSS 信号电平为-130dBm 条件下:
 - 1) B1 频点
 - B1 频点 七阵调零单干扰: 达到干信比 120dB:
 - B1 频点 七阵多波束单干扰: 达到干信比 125dB:
 - B1 频点 七阵调零三干扰:达到干信比 100dB;
 - B1 频点 七阵多波束三干扰: 达到干信比 105dB;
 - B1 频点 七阵调零五干扰: 达到干信比 105dB;
 - B1 频点 七阵调零六干扰: 达到干信比 100dB。
 - 2) B3 频点:
 - B3 频点 七阵调零单干扰:达到干信比 120dB;
 - B3 频点 七阵多波束单干扰: 达到干信比 125dB;
 - B3 频点 七阵调零三干扰: 达到干信比 110dB;

- B3 频点 七阵多波束三干扰: 达到干信比 115dB;
- B3 频点 七阵调零五干扰: 达到干信比 105dB;
- B3 频点 七阵调零六干扰: 达到干信比 100dB。
- b) RDSS 信号电平为-123.8dBm, 16kbps 信息帧速率条件下:
 - S 频点 七阵调零单干扰: 达到干信比 90dB;
 - S 频点 七阵多波束单干扰: 达到干信比 95dB;
 - S 频点 七阵调零三干扰: 达到干信比 85dB;
 - S 频点 七阵多波束三干扰: 达到干信比 90dB;
 - S 频点 七阵调零五干扰: 达到干信比 75dB;
 - S 频点 七阵调零六干扰: 达到干信比 70dB。
- c) B2b 信号电平为-127.8dBm:
 - B2b 频点 七阵调零单干扰: 达到干信比 95dB;
 - B2b 频点 七阵多波束单干扰: 达到干信比 100dB;
 - B2b 频点 七阵调零三干扰: 达到干信比 90dB;
 - B2b 频点 七阵多波束三干扰: 达到干信比 95dB;
 - B2b 频点 七阵调零五干扰: 达到干信比 85dB;
 - B2b 频点 七阵调零六干扰: 达到干信比 80dB。

2.3.8 抗干扰下的高精度性能

- a) 观测量质量: 伪距精度为 0.5 米左右, 载波精度为 0.01 米以内:
- b) 定位精度: 静态精度为水平 5cm, 高程 10cm(1σ), 固定率 99.7%以上;
- c) 测向精度: 2 米基线 0.2 度。
- 2.4 全球短报文接收与发射性能
- 2.4.1 工作频点
 - a) 接收信号类型: B2b;
 - b) 发射信号类型: Lf4。
- 2.4.2 接收灵敏度

<-130dBm (误码率<1e⁻⁵)

2.4.3 接收通道数

>16

2.4.4 重捕获时间

北斗卫星信号短时中断 30s, 重捕时间不超过 2s。

2.4.5 通信成功率

全球短报文支持单次发送报文最大长度: 560bit (40 个汉字),通信成功率 >95%。

2.5 导航信息增强技术指标

- a) 可接收和处理低轨窄带广播导航增强信息(在系统支持导航基带接收的前提下)、低轨窄带或宽带通信终端基带提供的导航增强信息,实现联合位置解算及导航增强的能力;
- b) 首次定位时间:优于10s(在系统能力具备条件下);
- c) 定位精度: 水平<0.3m, 高程<0.6m (1σ) (在系统能力具备条件下)。

2.6 快速精密定位技术指标

- a) 低轨快速精密定位信号接收信号类型
 - 1) LEO-L: 1522.224±2.046MHz;
 - 2) LEO -B2b: 1202.025±2.046MHz.
- b) 具有 GNSS 卫星导航信号、低轨卫星精密导航信号和增强信息联合解算 能力;
- c) 低轨卫星精密导航信号灵敏度:
 - 1) 捕获灵敏度: <-133dBm;
 - 2) 跟踪灵敏度: <-138dBm。
- d) 单频点跟踪通道数量: >6:
- e) 低轨卫星精密导航信号伪距测量精度: 优于 0.6m (载噪比>45dBHz);
- f) 低轨卫星精密导航信号载波相位测量精度:优于 2mm(载噪比≥45dBHz);
- g) 联合解算定位精度: 水平优于 0.1m (1σ), 垂直优于 0.2m (1σ) (在系 统能力具备条件下);
- h) 联合解算收敛时间: <1min。(在系统能力具备条件下)
- i) 最大频偏估计范围: ±40KHz;
- i) 最大频率变化率支持: 500Hz/s;
- k) 电文误码率: ≤1×10⁻⁶ (载噪比≥45dBHz)。

2.7 安全定位授时技术指标

a) 具备低轨安全定位授时信号(SPT)接收能力;

- b) LEO 接收灵敏度: ≤-120dBm (误码率≤10-5);
- c) 独立定位精度: ≤50m (1σ);
- d) 独立定位收敛时间: <8min(多星);
- e) 独立授时精度: ≤200ns (1σ);
- f) 最大频偏估计范围: ±40KHz;
- g) 最大频率变化率支持: 500Hz/s;
- h) 多普勒测量精度: ≤1Hz (载噪比>55dB-Hz)。

2.8 其它指标

- a) 针对记忆码信号(例如 Galileo E1OS)或者伪码生成方式未知的信号(例 如伪卫星), 预留伪随机码加载设计, 支持对这些信号的接收;
- b) 内置主频可达 264MHz 的 Cortex-M4 处理器,配备 256KB 的 SRAM, 具有独立的中断控制器和 TAP 调试器:
- c) 支持 B 码授时接口,满足 IRIG-B(DC)授时协议,授时精度≤20ns。
- d) 内置 1024 点浮点 FFT 加速器。

3 电源规格

3.1 电源接口

表2 电源接口列表

序号	名称	标识
1	基带内核电源	DVDD_Core
2	抗干扰内核电源	KGR_VDD
3	DDR 数字核电源	DDR_VDD
4	DDR IO 电源	DDR_VDDQ
5	DDR 数字参考测试点	DDR_VREFD_TEST
6	DDR 模拟参考测试点	DDR_VREFD_TEST
7	DDR PLL HV 电源	DDR_VDD_PLL_A
8	DDR PLL 参考电源	DDR_VDD_PLL
9	PLL 输出时钟电源	PLL_VDDAP
10	PLL 模拟电源	PLL_VDDB
11	RF 数字电源	RF_VCC_DIG
12	IF 输出开关电源	RF_VCC_SPDT
13	RF CLKPLL 电源	RF_VCC_CLKPLL
14	RF TX 电源	RF_VCC_TX
15	RF RX 电源(1、3、5、7)	RF_VCC_RX
16	RF EFUSE 模拟烧录电源	RF_EFUSE_AVDD
17	EFUSE 模拟烧录电源	EFUSE_AVDD
18	ADC 模拟电源	ADC_AVDD
19	ADC 参考电源	ADC_REFP
20	GROUP1 IO 电源	KGR_VDDIO3_GROUP1
21	GROUP2 IO 数字电源	KGR_PVT_AVDD18_GROUP2
22	GROUP3 IO 电源	KGR_VDDIO2_GROUP3
23	GROUP4 IO 电源	KGR_VDDIO5_GROUP4
24	GROUP5 IO 电源	KGR_VDD18_LVDS_GROUP5
25	GROUP6 IO 电源	KGR_VDDIO4_GROUP6
26	GROUP7 IO 电源	KGR_VDDIO6_GROUP7
27	1.8V IO 数字电源 (EMMC, GMAC)	P18_VDDPST_IO
28	3.3V IO 数字电源	P33_VDDPST_IO
29	1.8V/3.3V IO 数字电源	P1833_GROUP1_VDDPST_IO
30	1.8V/3.3V IO 数字电源	P1833_GROUP2_VDDPST_IO

序号	名称	标识
31	1.8V/3.3V IO 数字电源	P1833_GROUP3_VDDPST_IO
32	抗干扰 PLL 数字电源	KGR_PLL_VDDA
33	抗干扰 PLL 模拟电源	KGR_PLL_VDDB
34	抗干扰 PLL 输出时钟电源	KGR_PLL_VDDP
35	抗干扰烧录 1.8V 电源	KGR_EFUSE_AVDD18
36	抗干扰烧录 0.9V 电源	KGR_EFUSE_AVDD09

3.2 电源时序

3.2.1 上电顺序

电源上电顺序按时间分为8个阶段,推荐上电时序:

a) 第一阶段上电:

KGR_VDDIO3_GROUP; KGR_VDDIO6_GROUP7; P33_VDDPST_IO; KGR_VDDIO4_GROUP6; P18_VDDPST_IO; KGR_VDDIO2_GROUP3; KGR_VDDIO4_GROUP6; KGR_VDDIO5_GROUP4; P1833_GROUP1_VDDPST_IO; P1833_GROUP2_VDDPST_IO; P1833_GROUP3_VDDPST_IO; MGR_VDD18_LVDS_GROUP5.

- b) 第二阶段上电: DDR VDD, KGR PVT AVDD18 GROUP2, KGR PLL VDDB。
- c) 第三阶段上电: DDR VDDQ, KGR VDD18 LVDS GROUP5。
- d) 第四阶段上电:
 KGR_PLL_VDDA, KGR_PLL_VDDP, KGR_EFUSE_AVDD09,
 DDR_VDD_PLL_A, PLL_VDDB, KGR_VDD。
- e) 第五阶段上电: ADC_AVDD, ADC_REFP。
- f) 第六阶段上电:
 RF_VCC_SPDT, RF_VCC_CLKPLL, RF_VCC_TX, RF_VCC_RX。
- g) 第七阶段上电:
 DDR_VDD_PLL, PLL_VDDAP, RF_VCC_DIG, KGR_EFUSE_AVDD18,
 RF EFUSE AVDD, DVDD Core。

h) 整体上电时序遵循 IO 先上电,内核后上电。

3.2.2 掉电时序

掉电时序与上电时序相反。

3.2.3 复位时序

内核上电后复位时间大于 10ms, 复位信号低电平有效。

3.3 功耗

芯片功耗: ≤8W (典型工况平均功耗)。

J用典型工况: 定位频度设定为 1Hz、16 个北斗系统 J用通道和 14 个 RDSSJ用通道处于连续跟踪状态同时接收导航增强信息情况下的功耗。

民用典型工况: 定位频度设定为 1Hz、16 个北斗系统民用通道和 14 个 RDSS 民用通道处于连续跟踪状态同时接收导航增强信息情况下的功耗。

SPT 典型工况: 定位频度设定为 1Hz、SPT 独立定位情况下的功耗。

芯片具有旁路休眠功能:在休眠模式下,芯片运行在极低功耗水平,唤醒后 能够进行快速热启动。

4 电气特性

4.1 极限参数

在任何情况下都不能超过下表所列的最大额定值的范围,否则将会永久性地损坏芯片。

	名称	参数	Min	Max	单位
	内核电源	0.9	-0.3	1.1	V
	0.9V PLL 电源	0.9	-0.3	1.1	V
	1.8V PLL 电源	1.8	-0.3	2.0	V
	1.8V IO 电源	1.8	-0.3	2.0	V
电源	3.3V IO 电源	3.3	-0.3	4.0	V
- 11/4	0.9V EFUSE 电源	0.9	-0.3	1.1	V
	1.8V EFUSE 电源	1.8	-0.3	2.0	V
	ADC 模拟电源	0.9	-0.3	1.1	V
	RF 电源	0.9	-0.3	1.1	V
	DDR IO 电源	1.5	-0.3	1.65	V

表3 极限参数列表

名称		参数	Min	Max	单位
	DDR 参考电压	0.75	-0.3	0.9	V
		LVCMOS18	-0.3	DVDDIO18+0.3	V
	数字 IO 模拟信号(ADC) 时钟输入	LVCMOS33	-0.3	DVDDIO33+0.3	V
IO		SSTL15	-0.3	2.45	V
		ANALOG	-0.3	1.1	Vpp
		SysClk_In	-0.3	DVDDIO33+0.3	V
	. 4 (1 1114)	ADCClk_In	-0.3	DVDDIO33+0.3	V

4.2 推荐工作参数

表4 电源推荐工作参数

名称		参数	Min	Type	Max	单位
	内核电源	0.9	0.81	0.9	0.99	V
	0.9V PLL 电源	0.9	0.81	0.9	0.99	V
	1.8V PLL 电源	1.8	1.71	1.8	1.89	V
	1.8V IO 电源	1.8	1.71	1.8	1.89	V
	3.3V IO 电源	3.3	3.135	3.3	3.465	V
电源	0.9V EFUSE 电源	0.9	0.81	0.9	0.99	V
	1.8V EFUSE 电源	1.8	1.71	1.8	1.89	V
	ADC 模拟电源	0.9	0.81	0.9	0.99	V
	RF 电源	0.9	0.81	0.9	0.99	V
	DDR IO 电源	1.5	1.42	1.5	1.57	V
	DDR 参考电压	0.75	0.74	0.75	0.76	V

4.3 ESD

表5 ESD 参数列表

名称	模型	条件	等级	最大值	单位
VESD(HBM)	Human body model	TA=+25°C	2	2000	V
VESD(CDM)	Charge device model	TA=+25°C	II	500	V
VESD(MM)	Machine model	TA=+25°C	В	200	V

4.4 结温与散热

表6 温度参数列表

名称	参数	Min	Max	单位
贮存温度	Storage Temperature range	-65	150	$^{\circ}\!\mathrm{C}$
工作温度	Operation Temperation range	-55	125	°C
结温	Junction Temperature range	-55	125	°C

5 封装规格

- a) 封装方式: 塑封(FLIP-CHIPBGA)+Wirebonding SIP;
- b) 引脚间距: 0.8mm;
- c) 引脚球径: 0.5mm;
- d) 引脚数量: 784 (28 行×28 列);
- e) 基板层数: 8层;
- f) 封装尺寸: 23mm×23mm× (≤2.2mm);
- g) 详细封装信息见下图:

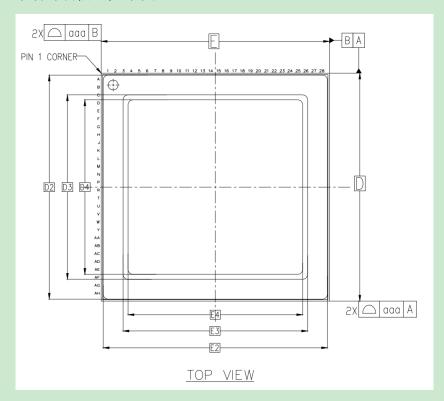


图1 芯片 TOP 面

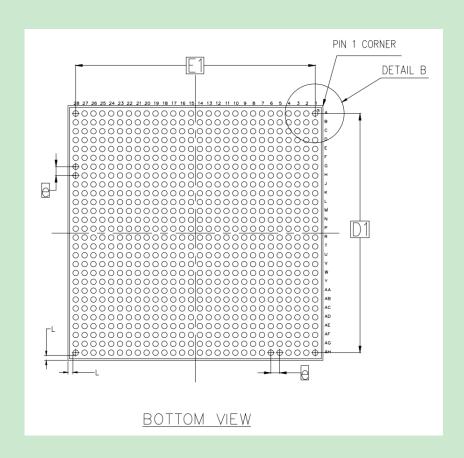


图2 芯片 BOTTOM 面

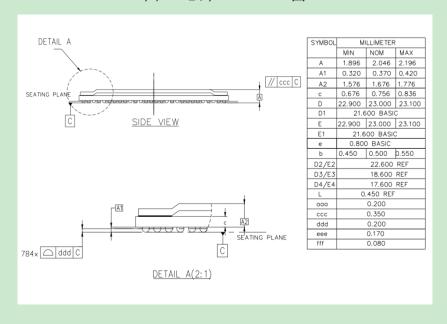


图3 芯片 SIDE 面

6 产品型号及含义

芯片产品型号为 UNK14C92。

名称代表含义如下:

- a) UN: 代号;
- b) K:表示抗干扰;
- c) 14: 代表可以接受 14 路 AD 输入通道;
- d) C92: 基带部分系列代号。

7 丝印规格

图4 芯片丝印图

名称代表含义如下:

- a) 第一行: 固定打印 UNK14C92;
- b) 第二行: F1JCA 固定打印, YY-WW, YY 代表年号后 2 位, WW 为生产周数;
- c) 第三行: 固定打印 CHINA。

8 质量等级

要求芯片的基板设计、选型和芯片封装工艺可以满足 GJB7400 规范 N1 级的 认证要求。